Interspecific variation in xylem vulnerability to cavitation among tropical tree and shrub species.

نویسندگان

  • Omar R Lopez
  • Thomas A Kursar
  • Hervé Cochard
  • Melvin T Tyree
چکیده

In tropical moist forests, seasonal drought limits plant survival, productivity and diversity. Drought-tolerance mechanisms of tropical species should reflect the maximum seasonal water deficits experienced in a particular habitat. We investigated stem xylem vulnerability to cavitation in nine tropical species with different life histories and habitat associations. Stem xylem vulnerability was scored as the xylem water potential causing 50 and 75% loss of hydraulic conductivity (P50 and P75, respectively). Four shade-tolerant shrubs ranged from moderately resistant (P50=-1.9 MPa for Ouratea lucens Kunth. Engl.) to highly resistant to cavitation (P50=-4.1 MPa for Psychotria horizontalis Sw.), with shallow-rooted species being the most resistant. Among the tree species, those characteristic of waterlogged soils, Carapa guianensis Aubl., Prioria copaifera Griseb. and Ficus citrifolia Mill., were the most vulnerable to cavitation (P50=-0.8 to -1.6 MPa). The wet-season, deciduous tree, Cordia alliodora (Ruiz and Pav.) Oken., had resistant xylem (P50=-3.2 MPa), whereas the dry-season, deciduous tree, Bursera simaruba (L.) Sarg. was among the most vulnerable to cavitation (P50=-0.8 MPa) of the species studied. For eight out of the nine study species, previously reported minimum seasonal leaf water potentials measured in the field during periods of drought correlated with our P50 and P75 values. Rooting depth, deciduousness, soil type and growth habit might also contribute to desiccation tolerance. Our results support the functional dependence of drought tolerance on xylem resistance to cavitation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cavitation resistance and seasonal hydraulics differ among three arid Californian plant communities.

Vulnerability to water stress-induced cavitation was measured on 27 woody shrub species from three arid plant communities including chaparral, coastal sage and Mojave Desert scrub. Dry season native embolism and pre-dawn water potential, and both wet and dry season xylem specific hydraulic conductivity (Ks) were measured. Cavitation resistance, estimated as water potential at 50% loss in conduc...

متن کامل

Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits.

Cavitation resistance is a critical determinant of drought tolerance in tropical tree species, but little is known of its association with life history strategies, particularly for seasonal dry forests, a system critically driven by variation in water availability. We analysed vulnerability curves for saplings of 13 tropical dry forest tree species differing in life history and leaf phenology. ...

متن کامل

Scaling of angiosperm xylem structure with safety and efficiency.

We tested the hypothesis that greater cavitation resistance correlates with less total inter-vessel pit area per vessel (the pit area hypothesis) and evaluated a trade-off between cavitation safety and transport efficiency. Fourteen species of diverse growth form (vine, ring- and diffuse-porous tree, shrub) and family affinity were added to published data predominately from the Rosaceae (29 spe...

متن کامل

Cavitation Resistance among 26 Chaparral Species of Southern California

Resistance to xylem cavitation depends on the size of xylem pit membrane pores and the strength of vessels to resist collapse or, in the case of freezing-induced cavitation, conduit diameter. Altering these traits may impact plant biomechanics or water transport efficiency. The evergreen sclerophyllous shrub species, collectively referred to as chaparral, which dominate much of the mediterranea...

متن کامل

Vulnerability to xylem cavitation and the distribution of Sonoran Desert vegetation.

We studied 15 riparian and upland Sonoran desert species to evaluate how the limitation of xylem pressure (Ψ(x)) by cavitation corresponded with plant distribution along a moisture gradient. Riparian species were obligate riparian trees (Fraxinus velutina, Populus fremontii, and Salix gooddingii), native shrubs (Baccharis spp.), and an exotic shrub (Tamarix ramosissima). Upland species were eve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tree physiology

دوره 25 12  شماره 

صفحات  -

تاریخ انتشار 2005